Thalamus

Sits on top of brainstem
Near center of brain
Nerve fibers project in all directions

Difficult to map connections
Organized in 3D
Cortex is organized in 2D
Plus layers

Surrounds 3rd ventricle
Each half is shape & size of walnut

Relays sensory & motor signals
Regulation of consciousness
Sleep, and alertness

Lots of information from cortex
Lots of info to other brain parts
Multi-function switchboard
Every sense but smell

Vision
Lateral geniculate nucleus (LGN)
Pre-process and relay

Audition
Medial geniculate nucleus (MGN)
Auditory connection
From inferior colliculus to primary auditory cortex

Impacts sleep & wake
Reciprocal connections w/ cortex
Thalamo-cortical-talamic circuits

Provides channels
From basal ganglia & cerebellum
To cortical motor areas
Impacts antisaccade eye-movement

Damage
Korsakoff’s Syndrome
Can be caused by damage to thalamus
Fatal Familial Insomnia
Hereditary disease
degeneration of thalamus
gradual loss of ability to sleep
Leads to total insomnia & death

Thalamic Syndrome
Caused by stroke
One-sided burning sensation
Mood swings

Four parts
Ventral thalamus
Dorsal thalamus
Epithalamus
Hypothalamus

1. Ventral thalamus
 reticular nucleus
 GABAergic cells
 inhibit relay cells
 flush against lateral surface of dorsal thalamus

2. Dorsal thalamus
 Bundle of 15 relay nuclei
 Send signals to cortex

3. Epithalamus
 Interconnecting fibers to pineal gland and limbic system
 Secretion of melatonin (pineal)
 Emotion (basal ganglia)

4. Hypothalamus

Hypothalamus
Large dog barks at you, body reacts
 Neural response
 Hormonal response

Impacts
Triggers adrenal glands to release adrenaline and cortisol
Adrenaline (epinephrine)
 Increase heart rate
 Elevates blood pressure
Cortisol

- Primary stress hormone
- Increases blood glucose
- Improves brain’s use of glucose
- Increases availability of tissue repair substances
- Shut down nonessential functions
 - Anything not needed in fight-flight
 - Alters immune system
 - Suppresses digestive system
- Once Perceived Threat Is Gone
 - Resets
 - Unless it’s consistent threat
 - Depressed immune system, more likely:
 - Digestive problems
 - Sleep problems
 - Heart disease
 - Obesity

Located below thalamus

- About the size of an almond

Contains small nuclei

- Each with different functions
- Links nervous & endocrine sys

Secretes hormones

- stimulate or inhibit secretion by pituitary

Controls

- body temp, hunger, thirst, sleep, circadian rhythm and fatigue

Three parts

- Anterior
- Tuberal
- Posterior

1. **Anterior**

 Medial

 - Medial preoptic nucleus
 - Regulates release of gonadotropic hormones
 - Sexually dimorphic nucleus
 - releases GnRH
 - differential development of sexes
 - in-utero testosterone levels
Anterior Hypothalamic Nucleus
 panting, sweating
Suprachiasmatic Nucleus
 Circadian rhythms

Lateral
 Thirst & hunger

2. Tuberal
 Medial
 Dorsomedial Hypothalamic Nucleus
 Blood pressure & heart rate
 Growth hormone-releasing hormone (GHRH)
 Lateral
 Thirst & hunger

3. Posterior
 Medial
 Memory
 Blood pressure, pupil dilation, shivering
 Lateral
 Hunger
 Damage to this area
 reduced food intake
 Stimulating
 causes a desire to eat
 Blood sugar level drops
 Receptors in blood signal lateral hypothalamus
 Brain areas fire in unison
 creating the sensation of hunger
 Blood sugar level increases
 Signals ventro-medial hypothalamus
 Two structures
 lateral hypothalamic area
 Hunger
 Lateral preoptic nucleus
 Non-REM sleep
 Damage
 Frolich’s Syndrome
 decreased levels in GnRH
 defects of feeding centers of hypothalamus
 increase food and calorie intake
 It is characterized by:
 Affects males mostly
 No endocrine problems
Mature normally after puberty
It is characterized by:
 Growth retardation
 Atrophy of gonads
 Altered secondary sexual characteristics

Other names
- Babinski-Fröhlich syndrome
- Hypothalamic Infantilism-Obesity
- Launois-Cleret Syndrome
- Sexual Infantilism

Hypothalamus & Sex

Differences to brain structure
- **No cause-effect summary**
 - Differences in gender
 - Difference in sexual orientation

Suprachiasmatic Nucleus (SCN)
- **Internal clock**
 - Largest in heterosexual men
 - Smaller in homosexual men
 - Smallest in women

Sexually Dimorphic Nucleus (SDN)
- **In anterior hypothalamus**
 - twice as large in heterosexual men as and homosexual women, in terms of volume but not number of neurons.
- **Responds to smelling common odors**
 - scent of testosterone found in male sweat
 - homosexual men and heterosexual women
 - scent of estrogen found in female urine
 - heterosexual men and homosexual women

Pituitary gland

Protrusion at bottom of hypothalamus
- **Size of a pea**
- **Connects to hypothalamus**
 - Thin tube called pituitary stalk or infundibular stem

“Master” endocrine gland
- **Impacts other glands**
- **But controlled by hypothalamus**
Two parts
1. Anterior
 adenohypophysis
 parvocellular neurons (small)
 Secretes growth hormone (GH or HGH)
 Also called somatotropin
 $ by GHRH (from hypothal.)
 Growth hormone releasing hormone
 Inhibited by somatostatin
 From hypothal.
 Secretes TSH
 Thyroid-stimulating hormone
 Secretes ACTH
 Adrenocorticotropic hormone
 Secretes FSH (follicle-$ hormone)
 Secretes LH (lutropin)
 Secretes Prolactin (PRL)
 Secretes Beta-endorphin
 Secretes LTH (luteotropic)

2. Posterior
 neurohypophysis
 magnocellular neurons (large)
 Secretes Oxytocin
 Secretes ADH (antidiuretic hormone)
 Also called vasopressin

Function
Secretes hormones to control:
 Growth & metabolism
 Pregnancy & sex organs
 Thyroid gland
 Water regulation
 Temperature
 Endorphin

Diseases
Acromegaly
 too much growth hormone
Cushing’s
 Too much adrenocorticotropic hormone
Growth hormone deficiency
 Too little growth hormone
Syndrome of inappropriate antidiuretic hormone
 Too much vasopressin
Diabetes insipidus
 too little vasopressin
Sheehan syndrome
 Too little of any of the pituitary hormones
Pickardt-Fahlbusch syndrome
 Too little of any of the pituitary hormones
 Too much prolactin
Hyperpituitarism (adenoma)
 Too much of any of the pituitary hormones
Hypppituitarism
 Too little TSH (thyroid hormone)
 Vasopressin
Hyperthyroidism
 Too much TSH
 Almost always a pituitary adenoma

Limbic System
 Thalamus
 Hypothalamus
 Pituitary
 Basal ganglia

Basal ganglia
 In PNS = ganglia
 In CNS = nuclei
How they work
 Disinhibition principle
 If no input = steady fire at high rates

Distinct masses of gray matter
 deep in brain
 not far from thalamus
 Left-right sides mirror each other

Group of nuclei
 Work together as functional unit
 Interact with cortex, thalamus, etc

Neurotransmitters
 Inputs use Glutamate
 Outputs use GABA
 Internal connections use Dopamine or ACh
4 structures
- Striatum
- Pallidum (w 2 nuclei)
- Substantia nigra (2 parts)
- Subthalamic nucleus

Two large parts
- Striatum & Pallidum

Two smaller parts (& farther back)
- Substantia Nigra & Subthalamic

1. Striatum
- Largest
- Looks striped
- Large & small bundles of fibers
- White matter
- Looks like two blobs of gray separated by large white stripe
- Complex internal organization
- Vast majority of neurons (96%?)
 - lots of dendritic spines
 - small cell bodies
- Medium spiny
 - GABAergic
 - Inhibitors
- Two types of medium spiny
 - Substance P & dopamine D1
 - Direct pathway
 - Enkephalin & dopamine D2
 - Indirect pathway
- Organized in 3D
- Cortex is layered; organized 2D

Basal ganglia impacts
- Voluntary motor control
- Inhibits motor systems

Procedural learning
- Eye movements
- Habits

Rewards?
- Internal connections use dopamine
- VTA→NA dopamine connection
Increase effectiveness of signal
 Cocaine
 Nicotine
 Amphetamines
 Overactive in schizophrenia?

Eye movements
 Lots of brain regions at work
 Superior Colliculus
 layered structure
 2D retinal maps
 Gets inhibitory effect from basal ganglia (SNr)
 Pause their inhibition when eyes

Action selection?
 Which behavior to do when
 Parkinson's disease
 Major loss of dopaminergic cells in the substantia nigra
 Gradual loss of the ability to initiate movement
 Motivation
 Can do components of movement
 Hunger fails to initiate movements
 Not switched on: “paralysis of will”
 kinesia paradoxica
 Moves easily in emergency
 Immobile after issue passed

Motivation
 VTA to NA reward system
 Animals with $ electrodes
 Bar-pressing
 Humans show increased action
 addictive drugs
 good-tasting food
 Sex
 Animal with severe basal ganglia damage won’t move toward food
 Even if placed within inches
 Chew & swallow if put in mouth

Huntington's disease
 Major loss of medium spiny neurons in striatum
 inability to prevent parts of the body from moving unintentionally
Hemiballismus

Damage to the subthalamic nucleus
uncontrollable flinging movements of arms and legs

Cerebral palsy

Damage to basal ganglia during 2nd and 3rd trimester

Foreign accent syndrome

Some combination of problems in cerebellum, Broca’s area & basal ganglion
Caused by stroke or injury
Mispronunciation of words
Listener’s hear it as accent
speaking native with accent
Not new vocabulary
Sufferer’s may imitate other aspects of accent to normalize the syndrome