Basal Ganglia

General Info
Neural clusters in peripheral nervous system are ganglia. In the central nervous system, they are called nuclei. Should be called Basal Nuclei but usually called Basal Ganglia.

Works on disinhibition principle
 It’s the brain brake
If no input = steady fire at high rates

Neurotransmitters
 Inputs use glutamate
 Outputs use GABA
 Internal connections use dopamine or ACh

Group of nuclei
Distinct masses of gray matter
 Left-right sides mirror each other
Work together as functional unit
Interact with cortex, thalamus, etc

FOUR PARTS
Striatum
 Dorsal
 caudate & putamen
 Ventral
 nucleus accumbens & olfactory
Pallidum
 globus pallidus (dorsal)
 ventral pallidum
Substantia nigra (pons)
Subthalamic nucleus (below thalamus)

Two large parts
 Striatum & Pallidum
Two smaller parts (& farther back)
 Substantia Nigra & Subthalamic

Disorders
 Huntington's disease
 Major loss of medium spiny neurons in striatum
 Inability to prevent parts of the body from moving unintentionally

1. Striatum
Largest
Looks striped
Looks like two blobs of gray separated by large white stripe
input from many brain areas
only outputs to other parts of basal ganglia
Complex internal organization
 Direct pathway (D1)
 Indirect (D2)
Organized in 3D
 Cortex is layered; organized 2D
Coordinates multiple aspects of cognition
action planning
decision making
motivation
reinforcement
reward

Interneurons
 Release acetylcholine
 Many types of interneurons
 include fast-spiking interneurons
Continuously produce new neurons in striatum

Striatum is activated by stimuli associated with reward
aversive
novel & unexpected
intense stimuli

Ventral striatum composed of olfactory tubercle & nucleus accumbens
As a whole, major role in cognitive processing of
 aversion & pleasure
 motivation
 reward & reinforcement
 addiction
As a whole, minor role
 cognitive processing of:
 fear (type of aversion)
 impulsivity
 placebo effect
Also involved in
 encoding of new motor skills

Nucleus accumbens
 Two, one in each hemisphere
 Each has two structures:
Nucleus accumbens core
- Increased density of dendritic spines
- Increased branch segments
- Increased terminal segments
- Processes
 - motor function related to reward
 - encodes new motor programs that help get future rewards

Nucleus accumbens shell
- Lower density of dendritic spines
- Less terminal segments
- Less branch segments
- Processes
 - want (motivational salience)
 - reward perception
 - positive reinforcement
 - drugs & naturally rewarding stimuli
 - addictive drugs affect dopamine in shell more than core

Function
Reward
- Subset of VTA neurons
 - Dopamine (D1) medium spiny neurons in shell
Drugs
- Increase dopamine in shell & core; more pronounced in shell
 - morphine
 - cocaine
 - amphetamines
 - at high levels, increase dopamine level to similar levels in both shell & core
Drug rewards
- has abnormal strengthening effect on stimulus
- drug associations
- increases drug-reward stimuli’s resistance to extinction
- effect was more pronounced in shell than core
Addiction
- Links to addictions to
 - alcohol, cannabinoids, cocaine
 - nicotine, opioids & amphetamines

Links to
- Depression
- OCD
- Placebo effect
2. Pallidum
 Input from striatum
 Sends inhibitory output to a number of motor-related areas
 Globus Pallidus
 Latin for "pale globe"
 AKA, paleostriatum or dorsal pallidum
 Output to substantia nigra
 Very large neurons
 Very large dendritic arbors
 3-dimensional shape of flat discs
 Involved in plan & inhibit move
 regulation of voluntary movement
 regulate subconscious movements
 If damaged, can cause movement disorders
 Balances excitatory action of cerebellum
 allow people to move smoothly
 even & controlled movements

3. Substantia Nigra
 Located in pons
 Important role in reward, addiction & movement
 Latin for black substance
 due to high levels of neuromelanin found in dopaminergic neurons
 Discovered in 1784
 Largest nucleus in midbrain
 Two substantiae nigrae; one on each side
 Function
 eye movement
 motor planning
 reward-seeking
 learning
 addiction
 Mediated thru striatum
 Co-dependence between striatum & substantia nigra
 Looks like a continuous band
 Two parts with very different connections and functions:
 1. Pars Compacta
 Supplies striatum with dopamine
 Heavily involved in learned responses to stimuli
 Activity increases when new $ is presented
 Partial dopamine deficits do not affect motor control
 Can lead to disturbances in the sleep-wake cycle
 Especially in hippocampus
 Parkinson’s
Neurodegenerative disease
tremor, stiffness, akinesia
bradykinesia, fatigue, depression
Death of dopaminergic neurons in pars compacta
Impacts motivation
Hunger fails to initiate movements
“Paralysis of will”
kinesia paradoxica
 Moves easily in emergency
 Immobile after issue passed
Animal with severe basal ganglia damage won’t move toward food
 Even if placed within inches
 Chew & swallow if put in mouth
Why neurons die is unknown
 unique susceptibility?
 abnormalities in mitochondrial?
 result in abnormal protein handling and neuron death
Dopaminergic neurons in pars compacta contain less calbindin
 protein involved in calcium ion transport within cells
 excess calcium in cells is toxic
Plasticity of pars compacta is robust
 no symptoms until 50-80% of pars compacta dopaminergic neurons have died

2. Pars Reticulata
 output to rest of brain
 spontaneously fire action potentials
 inhibits targets of basal ganglia
 decreases in inhibition are associated with movement
 Parkinson’s and epilepsy
 Altered patterns of firing
 single-spike
 burst firing

Schizophrenia
Patients have increased levels of dopamine
 dopamine antagonists remain a standard and successful treatment for schizophrenia
Substantia nigra’s pars compacta
 reduction in synaptic terminal size
 more active NMDA receptors
 reduced dysbindin expression

Wooden Chest Syndrome
aka, fentanyl chest wall rigidity syndrome
rare side effect of synthetic opioids (ie Fentanyl)
generalized increase in skeletal muscle tone
increased dopamine release and decreased GABA release in substatia nigra/striatum
most pronounced on chest wall muscles
leads to impaired ventilation
most common in anesthesia where rapid and high doses given intravenously

Cocaine
inhibition of dopamine reuptake
cocaine is more active in VTA than substantia nigra
increases metabolism in substantia nigra
altered motor function
also inhibits spontaneous firing by the pars compacta
inactivation of substantia nigra as treatment for cocaine addiction?

4. Subthalamic nucleus (also called Luys’ Body)
Input from striatum & cerebral cortex
Output to the globus pallidus
Small lens-shaped nucleus; major part of subthalamus
Functionally part of basal ganglia
Location
ventral to thalamus
dorsal to substantia nigra
medial to internal capsule
Discovered 1865, by Jules Luys
Structure
long sparsely-spiny dendrites
elliptical dendritic arbors
Spontaneously firing cells
Pace-maker of the brain?
Oscillatory and synchronous activity
Stimulated to treat Parkinson’s
causes nearby astrocytes to release ATP
precursor to adenosine
catabolic process
Damage
small vessel stroke in patients with diabetes, hypertension, or a history of smoking
produces hemibaliismus
uncontrollable flinging movements of arms and legs
Functions
impulse control
OCD cause?
action selection?
Basal ganglia all work together

Impacts
- Eye movements
- Action selection
- Voluntary motor control
- Inhibits motor systems
- Procedural learning
- Eye movements
- Habits

Lots of brain regions work

Basal ganglia impacts implicit learning
- Action selection?
- Which behavior to do when?

Parkinson’s
- Cerebral palsy
 - Damage to basal ganglia during 2nd and 3rd trimester

Foreign accent syndrome
- Some combination of problems in cerebellum, Broca’s area & basal ganglion
- Caused by stroke or injury
- Mispronunciation of words
- Listener’s hear it as accent
- Not new vocabulary
- Sufferer’s may imitate other aspects to normalize syndrome